H=-16t^2+48+64

Simple and best practice solution for H=-16t^2+48+64 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H=-16t^2+48+64 equation:



=-16H^2+48+64
We move all terms to the left:
-(-16H^2+48+64)=0
We get rid of parentheses
16H^2-48-64=0
We add all the numbers together, and all the variables
16H^2-112=0
a = 16; b = 0; c = -112;
Δ = b2-4ac
Δ = 02-4·16·(-112)
Δ = 7168
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{7168}=\sqrt{1024*7}=\sqrt{1024}*\sqrt{7}=32\sqrt{7}$
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-32\sqrt{7}}{2*16}=\frac{0-32\sqrt{7}}{32} =-\frac{32\sqrt{7}}{32} =-\sqrt{7} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+32\sqrt{7}}{2*16}=\frac{0+32\sqrt{7}}{32} =\frac{32\sqrt{7}}{32} =\sqrt{7} $

See similar equations:

| (3x+5)(2x+7)=0 | | X^2-9x=8x | | 3x+60+5x-20=180 | | 9x+27=3(3x+9) | | 9b−12=6 | | X-1.2-x-5=1+x | | 9b-12=8 | | 7=4(v-5)-7v | | 5x+6+x+7=2x-3+2x | | 35-2x=7x+2x | | 12t^2-3=0 | | 1.4p+7-3.9p=-2 | | 19x^2-3x=0 | | 20x+40+10=70 | | 12+x^2=-7 | | 235x+5+10+20=19 | | x^2-33x=154 | | (x+3)(x–4)=0 | | 2(x-6)=8-3x | | 5-(8v-5)=-4(1+3v) | | H=3+28t-16t^2 | | (15+x)(18+x)=154 | | x*5=1/2+1/3 | | 900=4/5*x | | 6x+128=8(x-43) | | 7k=5k+20 | | 7x-10=2x+10 | | -12u-(-39u)+22u=49 | | 100=5/24*x | | -17h-(-20h)+(-3)=12 | | 5^3x+4=29 | | -9a+8-4a-2=36 |

Equations solver categories